Grains Research and Development

Date: 01.01.2006

Information the foundation of success

By Tom Cowlrick, Wayne Pluske and Peter Wylie

Nutrient Management Systems, an independent specialist company providing advice and recommendations in soil health and plant nutrition through partnerships across all cropping regions, is undertaking this project within the NMI. It will establish a foundation for improved nutrient management by graingrowers, through better understanding information needs and the constraints and solutions to adoption of improved nutrient management practices, establishing standards for nutrient management advice and improved mechanisms for nutrient management information access.

It will work across all other NMI projects to ensure their findings and recommendations are made available to the industry in forms that enable ready adaptation and adoption.

The project has begun with a survey of current nutrient management practices/decision methods, and accessibility of essential nutrient management information. A vision of best-practice nutrient management for the grains industry is being developed, along with a nutrient management framework covering factors to be considered for comprehensive nutrient advice and decision. A gap analysis will identify constraints to adoption of these best-practice components and recommend actions to overcome them. A pilot program for comprehensive nutrient management advice will be run, using farm advisers located in major cropping regions. A communication program through rural media, and an electronic project newsletter, will heighten awareness about nutrient management research, improvement opportunities and programs.

Until the 1980s the "sufficiency approach" was the dominant nutrient management approach, where crop responses to nutrients could be demonstrated. Calibrations to populate "sufficiency models" were commenced in 1967 in the national Soil Fertility Project, which established a large series of field experiments across Australia to develop fertiliser recommendation models, primarily for nitrogen and phosphorus, based on soil analysis for nutrient content.

During the 1980s, the combined effects of changes such as reduced tillage, introduction of new crops, expansion of graincropping to soils previously not included in the national Soil Fertility Project, reduction in soil research funding, increase in the number of fertiliser supply companies and decline in publicly-funded advisory services resulted in reduction in the perceived credibility of the original calibrations. This provided a space for the consideration and introduction of a range of other nutrient management approaches that at times are at odds with the sufficiency approach. These include "Maintenance/build-up", "Base cation saturation ratio" and "removal/replacement", which generally rely less on calibration and more on concepts with more intuitive and transparent methods of determining the requirement for nutrients and rates of nutrient addition.

The result is that there are currently many approaches to nutrient management derived from many sources, ranging from detailed scientific investigation to cumulative observation and individual or group experience.

To be truly useful to the grains industry there are some key criteria (described below) that should be applied to all systems of interpretation and information integration when developing or assessing a nutrient management program. These criteria should be present in nutrient management strategies whether they are based on soil and plant tissue analysis data or on other objective measurement criteria.

Local calibration is the process where the performance of a method of determining nutrient requirement or the performance of a product or application strategy is tested and proven under specific conditions of soil, season and management. Local calibrations are generally an adaptation of globally accepted principles and should provide some probability with which the product/nutrient management practice will be successful. They should also indicate the extent and/or range of likely change.

The definition of local can vary from an individual paddock or farm to entire continents. In grain production areas of Australia soil type and climate are generally the main parameters used to define local calibration. For soil tests, hundreds of "site-years" of experiments are usually required to develop a local calibration.

Crop nutrition is a function of both supply and demand for nutrients. The ability to modify recommended inputs according to yield is important as it allows adjustment of inputs when yield (output) is changed by an uncontrolled factor such as climate or by a controlled factor such as management. Yield dependence is essential for developing sensitivity analysis for inputs (fertiliser prices) and outputs (grain prices) and having the ability to make tactical decisions as circumstances change in-season.

Sensitivity analysis refers to an ability to vary a single factor or group of factors (including multiple nutrients) to help understand the nature of their interactions. Sensitivity analyses allow better optimisation of inputs for production of outputs and prediction of likely returns and risk if inputs are altered, sometimes within models that cater for variable management and/or seasonal conditions. For nutrients this usually includes the ability to vary yield, value of output commodity, nutrient rate and its cost to define the most economic rate of nutrient addition. This ability across a range of scenarios in turn enables risk to be assessed.

Input to decisions by a credible local adviser at worst confirms local calibrations. More often such input enhances local calibrations and provides practical information on practices that cannot be or are not completely specified as variables in local calibrations. Skillful use of the information gained from practical experience in an area allows an adviser to identify some of the factors creating scatter in the general local calibration. By using local experience, an adviser increases the value of the output of local calibrations and of a recommended course of action.

A holistic approach considers multiple factors that may impact on the effectiveness of a product or practice in the long and short term. For nutrient management this may include factors such as the impact of pests, diseases and weeds, soil physical characteristics, other soil chemical parameters, economic and social environments and likely off-target effects. For example, it is now recognised that the effects of soil-borne diseases and pests on crop performance prior to the introduction of canola contributed to the unreliability of responses of winter cereals to nitrogen fertiliser in the southern grain belt. These factors will be included in the nutrient management framework being developed by this project, which is also linked to the aims and activities of the FERTCARE program being developed by the Australian fertiliser industry. With fertiliser now accounting for up to 30 per cent of some graingrowers" variable costs, the push is on to improve both the type of information available about nutrient management and its interpretation, to enable growers to better set and manage nutrient budgets.

Tom Cowlrick is managing director and Wayne Pluske a director of Nutrient Management Systems. Peter Wylie is a farm consultant with Horizon Rural Management in southern Queensland.

GRDC Research Code NMS00002

For more information: Tom Cowlrick, 07 3206 2124,

Region North