SOIL SAMPLING AND VARIABILITY - WHAT DOES THIS MEAN FOR YOUR NUTRIENT DECISION?

Yvette Oliver, Phil Ward and Karen Treble - CSIRO

SOIL SAMPLING

(photo from David Weaver)

Gourley CJP and Weaver DM (2019) A guide for fit for purpose soil sampling, Fertilizer Australia, Canberra, Australia

THE BUGGER FACTORS FOR SOIL SAMPLING NUTRIENT VARYING ACROSS A SMALL AREA

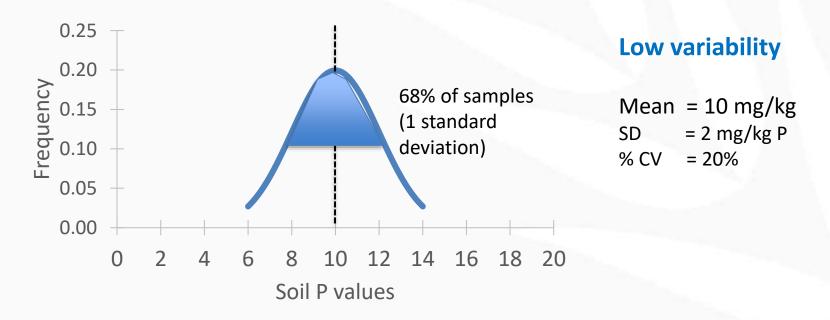
Stubble

Spreaders

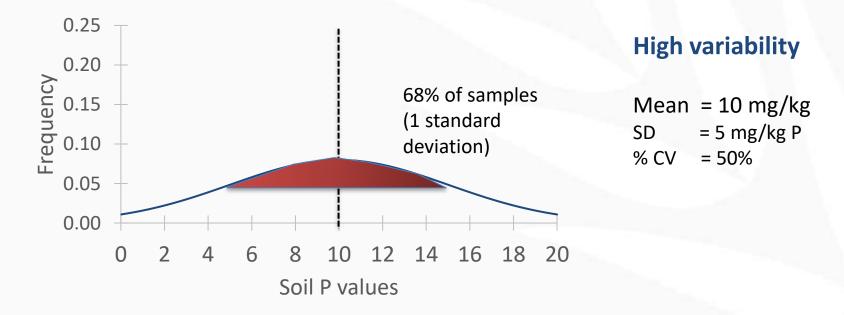
Soil variation

Placement of nutrients

Soil disturbance



LOW VARIABILITY


- Variability refers to how spread out a group of data is.
- Defined by Mean, Standard deviation (SD) and Coefficient of variation (%CV)
- %CV = standard deviation / mean x 100

HIGH VARIABILITY

- Variability refers to how spread out a group of data is.
- Defined by Mean, Standard deviation (SD) and Coefficient of variation (%CV)
- %CV = standard deviation / mean x 100

HOW VARIABLE ARE NUTRIENTS IN SOIL?

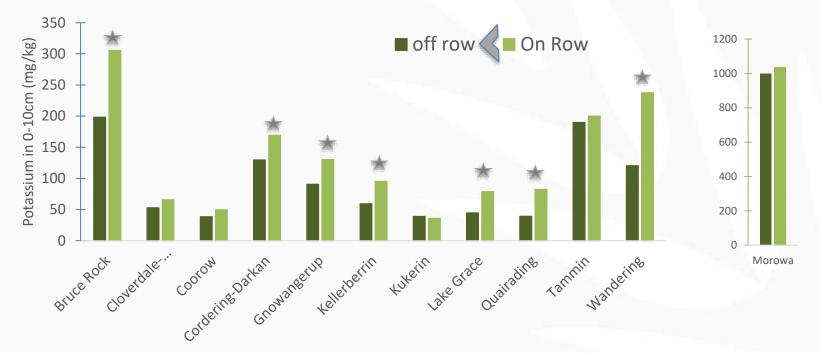
On the row and off the row

- 12 sites 8 to 16 samples analysed separately
- Soils included : sands, sandy duplex, gravels, loamy duplex and clay

Amelioration

- 3 amelioration trials 16 samples in control and deep rip
- 1 trial control and mouldboard 10 sites which are 10 cores bulked

Soil type and summer release from stubble


- 2 sites and 2 soil types at each site sampled In Feb (monthly to finish)
- 10 cores bulked as one sample, 10 locations per soil type

WA Literature

- P in 0-10cm at six locations with very intense sampling (80 cores) in close proximity (Ripper 1989)
- P and K had been assessed at 0-10cm via intense sampling at three locations across an entire paddock (141-516 samples per paddock). Weaver et al 2016

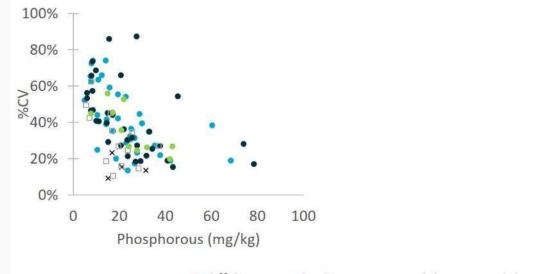

POTASSIUM OFF-ROW VS ON-ROW

More K on the row!!

PHOSPHOROUS AND NITRATE OFF-ROW VS ON-ROW

SOIL TYPE AND NUTRIENT VARIATION

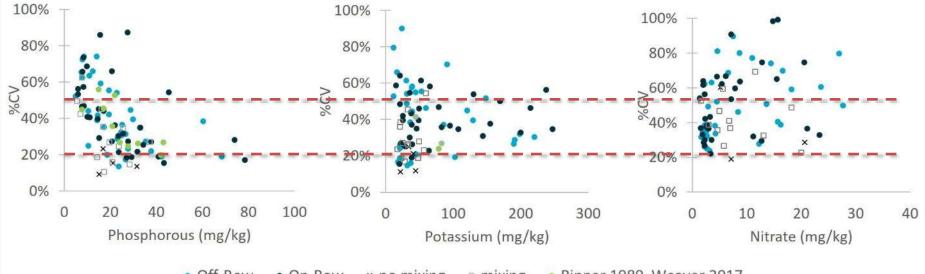
	Sand	Gutless sand
P mg/kg	28	22
K mg/kg	93	37


%CV within a soil type 11-15% P and K

All If samples were combined then %CV = 18% P and %CV =46% K

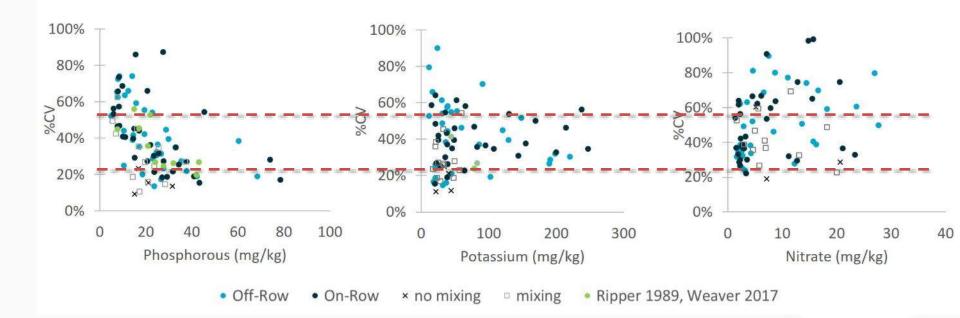
Sample to soil type

VARIABILITY AND SOIL TEST VALUES



Off-Row
 On-Row
 × no mixing
 mixing
 Ripper 1989, Weaver 2017

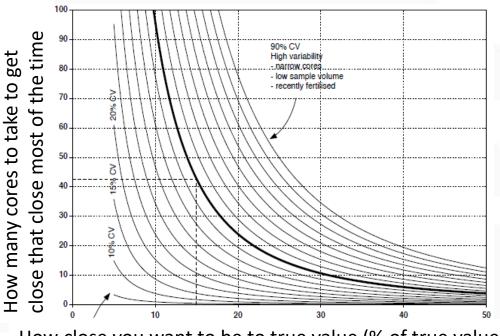
VARIABILITY AND SOIL TEST VALUES



Off-Row
 On-Row
 × no mixing
 mixing
 Ripper 1989, Weaver 2017

VARIABILITY AND SOIL TEST VALUES

No trend with nutrient concentrations Controls slightly less variable than deep ripped sites Need to tease out soil type effects


SO HOW MANY SAMPLES DO I NEED?

- Depends on how accurate you want/need to be
- How much variability there is

We use an economic approach to help decide

HOW MANY SAMPLES TO BULK ? DEPENDS ON VARIABILITY AND ACCURACY

How close you want to be to true value (% of true value)

Fig 10 . Gourley CJP and Weaver DM (2019) A guide for fit for purpose soil sampling, Fertilizer Australia, Canberra, Australia

Industry sampling protocol

- 8 20 cores at 0-10cm (bulked) = 1 site.
- Less subsoil cores 10-20, 20-30 cm
- Inter-row to in-row cores
 - 9:1 ratio or 8:1 ratio
 - Or not taken into account

HOW MANY SAMPLES TO BULK ? DEPENDS ON VARIABILITY AND ACCURACY

The % difference from the mean

Increasing number of

cores bulked

Increasing variability

		Coeffic						
Nu	umber					Actual P could b		
of	Cores	20%	30%	40%	50%	5 – 15 mg/kg		
	4	21	30	39	50	5 – 15 llig/k		
	10	13	19	25	31			
	14	11	16	21	26	10mg/kg P		
	20	9	13	18	22	soil test		
↓ I	30	7	11	14	18	94 116 mg		
	40	6	9	12	16	8.4 - 11.6 mg		

Adapted from "Gourley CJP and Weaver DM (2019) A guide for fit for purpose soil sampling, Fertilizer Australia, Canberra, Australia"

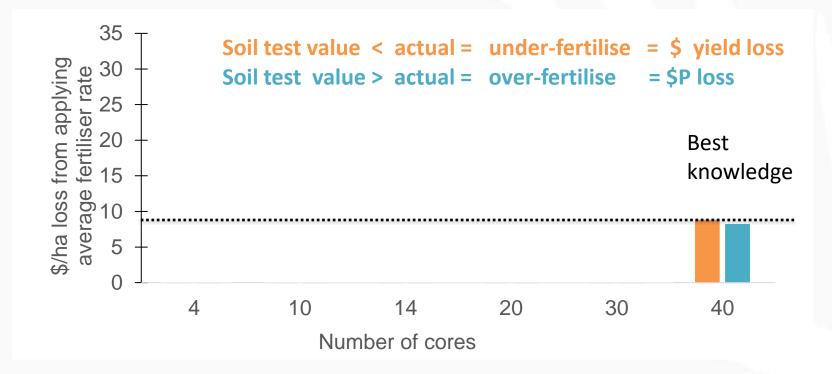
COST OF OVER OR UNDER FERTILISING

- Estimate the P fertiliser required for the average soil test value of 10 mg/kg P (we used NP Decide) which uses
 - P Soil test value mg/kg (Pst), Potential yield = 2.5 t/ha (A), Crop yield price = \$250/t (\$Yield), P price \$3.5/kg (P\$)
 - Includes parameters that account for soil test to yield relationships (Cstp) and the effectiveness of applied fertiliser (Kp):
- Estimate the Yield when the average fertiliser rate is applied to a low or high soil test value
 - NP decide using scalars (Psc) which depended on soil test values (Pst), Fertiliser rate of P (Pf), Effectiveness
 of applied fertiliser (Kp) and factor that relates soil test values to yield (Cstp)

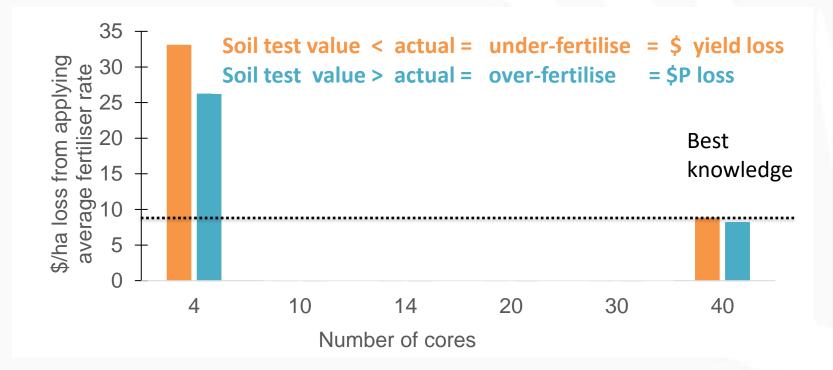
COST OF OVER OR UNDER FERTILISING

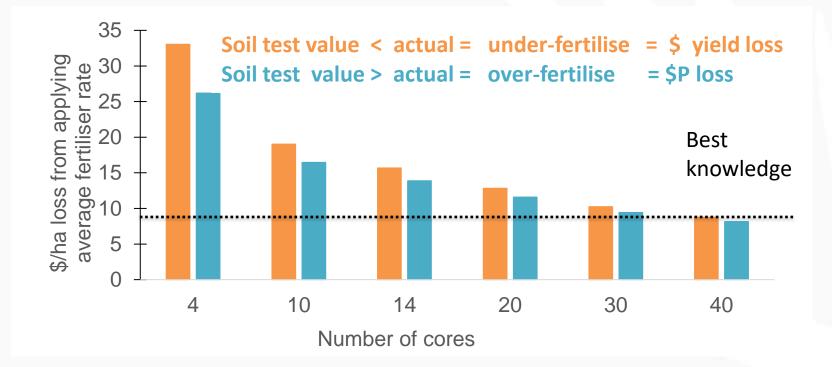
- Soil test value of **10 mg/kg P** BUT it could have been lower or higher
 - depending on the %CV and the number of samples taken

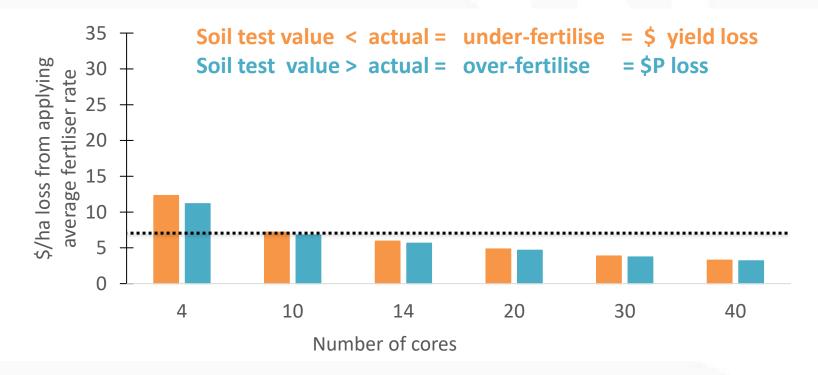
	20%	6 CV	50% CV	
Number of cores	Low P	High P	Low P	High P
4	8.4	11.6	6.3	13.7
10	9.0	11.0	7.6	12.4
14	9.2	10.8	8.0	12.0
20	9.3	10.7	8.3	11.7
30	9.5	10.5	8.7	11.3
40	9.5	10.5	8.8	11.2


COST OF OVER OR UNDER FERTILISING

- Apply fertiliser rate based on the average soil test value
- Soil test value LOW < average = under-fertilise = \$YIELD LOSS \$ loss (\$/ha) = (Yield with average soil test and average fertiliser rate – Yield with low soil test and average fertiliser rate) x \$grain price
- Soil test value HIGH > average = Over-fertilising = \$ P LOSS
 \$ loss (\$/ha) = (Low soil test P Average soil test P) x \$P price


HIGHLY VARIABLE SITE - 50%CV


HIGHLY VARIABLE SITE - 50%CV


HIGHLY VARIABLE SITE - 50%CV

LOW VARIABLITY

NUMBER OF SAMPLES

- Based on this example of 10mg/kg P
 - Highly variable sites (50% CV) need 20-30 samples bulked
 - Low variability (20% CV) need only 8-10 samples bulked
- This is just a framework to look at variability and \$ losses due to not taking enough samples
- If there are increases in price of P, \$ yield or soil test P values
 - Increased \$ loss from potential areas which are over- or under-fertilised
 - This may require a more accurate soil test value and therefore more cores

CONCLUDE

• Soil sampling can be a useful tool to assist with nutrient decisions and useful for tracking soil changes over time

BUT

 IF you don't take enough samples (and take care where you sample) the soil test number may NOT be correct

SO

- Understand how many samples you take and where you take them
 - Based on variability of the soil (small scale) and variability of soil types
- This was just an example to show the effect of variability and prices due to soil sampling strategies

Grains Research and Development Corporation (GRDC)

- A Suite 5, 2A Brodie Hall Drive, Bentley, WA 6102 Australia
- P PO Box 5367 Kingston, ACT 2604 Australia
- T +61 8 9230 4600

www.grdc.com.au

#GRDCUpdates

(f) @theGRDC