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Take home messages 

• Harnessing high resolution digital technologies will create more accurate and location specific 
information such as crop type and crop phenology stage 

• Mapping of likely specific crop type and phenological stages across environments are critical for 
reducing in season risk and thus optimising crop management practices at field scales 

• Scaling out of such tools will allow fast and robust applications across multiple fields, farms, and 
regions 

• The CropPhen digital tool will be delivered to industry via a national commercial partner. 

Aims 

The adoption of digital technologies can be constrained by demands such as, which data provider 
platform and the financial cost placed on users. Furthermore, there are a plethora of digital 
platforms currently available to industry, but key gaps in the underpinning science and a need to 
develop analytics that have been rigorously calibrated and tested on independent data sets for 
different genotypes, environments, and management practices within the Australian broadacre 
cropping landscape. The CropPhen project aims to map crop phenology per crop type across 
multiple fields and farms. Specifically, we aim to  

• Determine crop phenology and cropping dynamics from high resolution earth observation 
(EO) data at the field scale 

• Determine the ability of hyperspectral data from ground sensors, unmanned aerial vehicles 
(UAV) and satellites to augment the estimation of phenological stages at field scales by 
variety and environment, and 

• Through project partners Data Farming, develop and deliver a web-based information 
system that provides data on crop type classification and phenological stages within fields 
and field scales across large regions. 

Outputs generated from this project will assist industry to determine crop type, and individual 
growers to spatially map the current stage of development and predicted dates of development 
stages more accurately at fine spatial and temporal scales throughout the growing season. That 
phenological data could further provide a basis for the real-time estimation of potential damage, 
crop risks and losses at the field and sub-field scales from diseases, frost and heat events, and other 
production constraints. 

Background 

In the Australian grain cropping environment, accurate spatial and temporal information about crop 
type and phenological stage is essential for managing operations such as disease, weed control and 



the sequential decisions of application of N-fertiliser in cereals. For example, different chemical 
controls are often certified only for use at specific crop growth stages. This project will develop the 
analytics to provide reliable, accurate and spatially specific crop type classification and phenological 
estimates for wheat, barley, chickpea, and lentils (winter) and summer crops (sorghum) across the 
Australian Grain Belt. This will be achieved by integrating climate, crop modelling and high-
resolution EO technologies. Knowing the likely area of crop emergence and main phenological 
stages, at a farm and regional scale, will help enable operators to optimise management decisions 
relating to improved timeliness and variable application of in-season nutrition rates. Furthermore, 
this will inform grower’s existing knowledge on optimal disease, weed control and crop management 
practices to optimise return on investment.  

Methods 

Crop type classification 

Nation-wide surveyed ground truth data covering cropping fields for the 2018-2021 seasons 
(summer and winter) provided by industry partners are used to calibrate and validate a carefully 
designed deep learning (DL) model to accurately and timely discriminate between crop types across 
Australia. A pipeline for evaluating the field data and filtering noise (due to human errors) based on 
crop season start and flowering (peak vegetation index) information from MODIS NDVI has been 
applied. The refined field records will be overlaid with the high spatiotemporal resolution Sentinel 2 
imagery to derive selected spectral features for training the DL models. Figure 1 illustrated the 
overall distributions of the valid field polygons across the GRDC growth region and north-eastern 
Australia (NEAUS). The model for each region will be trained individually using filed polygons 
available in the region to reflect its unique crop characteristics.  

 
Figure 1. (Left) Distribution of Data Farming historic field polygons covering seasons from 2018 to 

2021; Location of crop validation sites, APSIM simulations and survey fields in Victoria. (Right) 
Zoomed in view of field data for north-eastern Australia (NEAUS). 

Crop phenology validation sites 

To understand the phenological cycles for the targeted crops in this project, field trials have been 
designed and planted for seasons since 2020. In 2020, a sorghum trial consisting of 6 plots (30 m x 
30 m) covering 3 genotypes was set up in Jondaryan, Queensland (-27.46, 151.54). In 2021, winter 
crop trials were set up in Allora (-28.061, 151.963), Callington (-35.141, 139.073) and Dale (-32.197, 
116.754). Trial layouts, along with planted crop types and crop genotypes are depicted in Figure 2.  



For each site, a weekly ground survey of phenological stage was collected using a simple survey form 
(Kobo Toolbox, USA). Additional data points included the recording of fresh and dry biomass at stem 
elongation (i.e., Zadok’s stage 31 for wheat) as well as at maturity along with final harvested yield 
data were collected.  

Capturing crop attributes from UAVs 

At each validation site multispectral data was captured using a high resolution MicaSense Altum 
camera (MicaSense, Inc., Seattle, USA) with 6 bands: blue (400-500 nm), green (500-600 nm), red 
(600-680 nm), red edge (680-750 nm), near infrared (750-1050 nm), and long wave thermal infrared 
(LWIR) (8000-14000 nm). The camera was mounted on a UAV at 60 m height to capture images at 
weekly intervals during the crop season. These flights were also designed to align with on ground 
phenology and crop morphological and physiological measurements.    

 

 
Figure 2. The three winter (one summer) validation sites. The GRDC ecological regions are coloured 
in the Australian map (top left). Fix sensors installed at each validation site also depicted. 

Results 

Examples of some of the preliminary results are given below. 

Measuring crop growth from multispectral UAV platforms 

Sensing of crop growth over time using high-resolution multispectral data enables the investigation 
of morphological and physiological crop traits for different genetics (G) x environment (E) x 
management (M) (Potgieter et al., 2021). Extracted vegetation metrics from the multispectral 
camera on the UAV show a strong relationship between canopy architecture and canopy 
temperature (Figure 3). Creating a sequential profile of crop development for wheat, barley, and 
canola at the three sites highlights differences of in-season phenological development of crops 
measured using vegetation indices across environments during the 2021 winter season (Figure 4). 
This will be further analysed to determine the impact of canopy temperature on final crop yield at 
field scales (Zhao et al., 2020) across the selected main winter crops, genotypes and environments 
(Das et al., 2022 submitted). 



Crop phenology 

We applied the process of ‘mathematical curve fitting’ and ‘feature point detection’ to get 
sequential, (every 5-days) vegetation indices (VIs) from Sentinel-2. Observed phenology stages both 
recorded from on ground field surveys and in field cameras were used to calibrate and validate 
phenology models. Figure 5 depicts data recorded from remote sensing and some of the feature 
point metrics (OSAVI: the Optimized Soil Adjusted Vegetation Index, and the PSRI: Plant Senescence 
Reflectance Index.) 

 

 
Figure 3. Example of one of the representative trials at Dale (Western Australia) indicating plot 
layout and crop species. (a) An optimized soil adjusted vegetation index (OSAVI) (b) and surface 
temperature (imagery date: 23/08/2021). Values of OSAVI and temperature aggregated for entire 
whole plot (‘without mask’) average reflectance values from both soil and canopy pixels; (c) & (d) 
OSAVI and canopy temperature (on top of green plants only, i.e. ‘masked’) using a 0.5 threshold on 
for canopy delineation (e) & (f) plot-wise variation of OSAVI and canopy temperature and differences 
between ‘masked’ and ‘without mask’ OSAVI and canopy temperature statistics on the same date of 
imagery. 



 
Figure 4. In-season phenological development of crops using vegetation indices (Vis) in different 
environments of Australia. 

 

 
Figure 5. Crop growth curve for derived mathematical attributes - the Optimized Soil Adjusted 
Vegetation Index (OSAVI) and Plant Senescence Reflectance Index (PSRI) - and measured crop 
phenology for Sorghum 2020/2021 season in Jondaryan.  

Crop type model validation and development 

Figure 6 shows the recurrent neural network (RNN) deep learning model derived and the 
classification of winter crops and non-crops for the 2020 cropping season for Moree.  Five main crop 
types in the region were considered. The model was able to determine what crop type was being 
grown with an accuracy of wheat (99%), barley (98.8%), canola (99.9%), chickpea (99.7%), and faba 



bean (97.8%). The current outputs were calibrated and validated with a model using Sentinel-2 
spectral features. Finally, analysis is currently underway that harnessing synchronous dynamic 
features from multi-spectral data, including physiological and morphological crop growth attributes 
(Nguyen et. al., 2022 submitted, data not shown). 

 

Figure 6. The model structure and the model output for classifying crop types for Moree in 2020. 

How will this information be delivered to farmers and industry? 

The methods to remotely map crop types at scale at different points in the season will be delivered 
to industry through project partners Data Farming (https://www.datafarming.com.au/), with an 
intent to make initial data available in the 2022 winter cropping season. The methods to remotely 
map crop phenology spatially are in an earlier stage of development, but will similarly be delivered 
to growers, agronomists, and other end-users through commercial partners.  

 

How can famers make use of this information? 

This project will deliver spatial information on crop phenology at scale, and in easily use-able 
formats that could be linked to other agronomic models and information systems. to near-real time 
spatial data on developmental stage would provide key data to supplement grower and agronomist 
decision making. For example:  

• More localised and accurate phenology data will help deliver better estimates of crop yield 
potential across a grower’s cropping operation, and thus enable more informed 
management strategies  

• A better understanding of the likely spatial variability in crop development in-season and 
across paddocks in different points in the landscape – that data could be used to forward 
plan harvest logistics, but also guide future variety x sowing date decisions for different 
paddocks  

• It will assist crop scouting through guiding agronomists on where to scout for damage from 
biotic and abiotic stresses based on which part of the crop in which paddocks is at a 
susceptible developmental stage  
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