Understanding and quantifying the drivers of seed yield in pulses

Victor Sadras & Lachlan Lake
South Australia Research & Development Institute

funded by
Grains Research & Development Corporation
Australia-India Strategic Research Fund
Yitpi Foundation

Australian Pulse Conference, 12-14 September 2016, Tamworth
Technological innovation
new combinations of pre-existing elements
Technological innovation new functions – Darwinian pre-adaptations

environment → yield

actual technology

G, M, G x M

potential technology

adoption rate

innovation rate

science, practice

farmer; physiology, genetics, soil...
short term + low aggregation: environment overrides technology
E is often a large source of variation

two exceptions

<table>
<thead>
<tr>
<th>Trait: yield</th>
<th>Crop</th>
<th>E : GxE : G ratio</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>field pea in Canada</td>
<td>31.9 : 2.8 : 1</td>
<td>Yang et al. (2005)</td>
</tr>
<tr>
<td></td>
<td>sunflower in Argentina</td>
<td>4.3 : 1.5 : 1</td>
<td>de la Vega et al. (2007)</td>
</tr>
<tr>
<td></td>
<td>wheat in Australia</td>
<td>3.0 : 2.2 : 1</td>
<td>Cooper et al. (1995)</td>
</tr>
<tr>
<td></td>
<td>sugar beet in Europe</td>
<td>27.5 : 1.1 : 1</td>
<td>Hoffmann et al. (2009)</td>
</tr>
</tbody>
</table>
Crop Science 56 (5) 2016

special issue GxE

13 papers

half define E as location/season
Slide ratio

$E : G \times E : G$ $15 : 7 : 2$
Spatial, probabilistic pattern of drought types for field pea

StressMaster to target specific environment

Soil

Climate (on-site sensor)

Management-to-date
 - Sowing
 - Fertilisation
 - Irrigation
 ...

Irrigation scenarios

Report by email

Terminal drought – a misleading concept

...cognitive structures...interact with grammar...provide conditions for language use...
Chomsky 1998

Chenu et al 2013
Patterns of water stress – pea vs chickpea

The presence of founder crops in the archaeological record of the Levant

Abbo et al 2003 Quarterly Review of Biology 78, 435

Vernalisation:
Abbo 2002 New Phytol 54, 695
Berger et al. 2005 Australian J Agr Res 56, 1191
<table>
<thead>
<tr>
<th>Species</th>
<th>Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>onset</td>
</tr>
<tr>
<td>Pea</td>
<td>73.6</td>
</tr>
<tr>
<td>Chickpea</td>
<td>80.3</td>
</tr>
<tr>
<td>Soybean</td>
<td>85.6</td>
</tr>
</tbody>
</table>

Onset and peak temperature for denaturation of seed protein isolates

Withana-Gamage et al. 2011 *J Sci Food Agric* 91:1022
Physiological approach to phenotyping

Crop growth rate derived from NDVI (g m$^{-2}$ oCd$^{-1}$)

Yield (t/ha)

Pea: Sadras et al 2013 *Field Crops Research* 150, 63
Probabilistic thermal regimes for chickpea in Australia

maximum temperature

minimum temperature
Mineralisation (kg N ha\(^{-1}\) month\(^{-1}\))

- erratic summer rainfall
- warm soil
- autumn rainfall break
- mild temp
- end rainfall season
- mild spring temp
- wet but cold winter

Sadras et al. unpublished
How reliable are simulation models?

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth</td>
<td>****</td>
</tr>
<tr>
<td>Phenology</td>
<td>****</td>
</tr>
<tr>
<td>Water budget</td>
<td>***</td>
</tr>
<tr>
<td>Nitrogen budget</td>
<td>**</td>
</tr>
<tr>
<td>Biomass partitioning</td>
<td>**</td>
</tr>
<tr>
<td>Extreme events</td>
<td>*</td>
</tr>
<tr>
<td>Pests</td>
<td>*</td>
</tr>
<tr>
<td>Biological aspects of rotations</td>
<td>-</td>
</tr>
</tbody>
</table>
Plasticity: one genotype producing alternative phenotypes in response to environment

+ stress

- stress

Woltereck 1909 Verhandlungen der Deutschen Zoologischen Gesellschaft 19, 110
Reaction norm is the mathematical function
phenotype = f(environment)

Woltereck 1909 Verhandlungen der Deutschen Zoologischen Gesellschaft 19, 110
Methods to quantify plasticity

Slope of reaction norm
- Allows for non-linearity
- Difficult to identify main E

Variance ratio
- Single value of plasticity
- Applies irrespective of E-driver

Yield stability – another misleading concept

Phenotypic plasticity of grain yield

- **Field pea in Australia**
 - \(b = 0.5^* \pm 0.05 \text{ t ha}^{-1} \)
 - \(b = 1.5^{***} \pm 0.23 \text{ t ha}^{-1} \)

- **Sunflower in Argentina**
 - \(b = -3.6^{***} \pm 0.32 \text{ t ha}^{-1} \)
 - \(b = 0.5^* \pm 0.05 \text{ t ha}^{-1} \)
 - \(P = 0.34 \)

- **Wheat in Mexico**
 - \(b = -1.7^{**} \pm 0.54 \text{ t ha}^{-1} \)
 - \(b = 2.0^{***} \pm 0.31 \text{ t ha}^{-1} \)
 - \(P = 0.38 \)

- **Rye in Finland**
 - \(b = 1.5^{***} \pm 0.23 \text{ t ha}^{-1} \)
 - \(b = 2.5^{**} \pm 0.75 \text{ t ha}^{-1} \)
 - \(b = 0.5^* \pm 0.05 \text{ t ha}^{-1} \)

Environment
- ● stress
- ○ potential
Phenotypic plasticity of grain yield

Environmental stress vs potential

- **Field pea in Australia**
 - $b = 1.5*** \pm 0.23$ t ha$^{-1}$
 - $b = 0.5^* \pm 0.05$ t ha$^{-1}$
 - $P = 0.34$

- **Sunflower in Argentina**
 - $b = 2.0*** \pm 0.31$ t ha$^{-1}$

- **Wheat in Mexico**
 - $b = 3.6*** \pm 0.32$ t ha$^{-1}$

- **Rye in Finland**
 - $b = 2.5** \pm 0.75$ t ha$^{-1}$
 - $b = -1.7** \pm 0.54$ t ha$^{-1}$
 - $P = 0.38$

Phenotypic plasticity of grain yield

Field pea in Australia

\[b = 1.5^{***} \pm 0.23 \text{ t ha}^{-1} \]

\[b = 0.5^{*} \pm 0.05 \text{ t ha}^{-1} \]

P = 0.34

Sunflower in Argentina

\[b = 2.0^{***} \pm 0.31 \text{ t ha}^{-1} \]

\[b = -1.7^{**} \pm 0.54 \text{ t ha}^{-1} \]

P = 0.38

Wheat in Mexico

\[b = -3.6^{***} \pm 0.32 \text{ t ha}^{-1} \]

P = 0.38

Rye in Finland

\[b = 2.5^{**} \pm 0.75 \text{ t ha}^{-1} \]

\[b = -1.7^{**} \pm 0.54 \text{ t ha}^{-1} \]

Heritability of trait per se

\[H^2 = (1.89 \pm 0.09) + (-1.19 \pm 0.20) \times MP \]

\[r = 0.95; p<0.01 \]

Alvarez Prado et al. 2014 *J Exp Bot* 65, 4479
Plasticity and GxE have been running in parallel for over a century
12k “plasticity” papers 1967-2013

Milestones

Richard Woltereck 1909

Anthony Bradshaw 1965

Mary Jane West-Eberhard 2003
Plasticity and GxE have been running in parallel for over a century

Milestones

Richard Woltereck 1909

Anthony Bradshaw 1965
Plasticity is a trait of its own, with its own genetic control

Mary Jane West-Eberhard 2003
Genetic regions associated with trait plasticity in chickpea

Sadras et al. 2016 J. Exp. Bot. 67, 4339
Genetics of crop and plant yield do not match

thank you
victor.sadras@sa.gov.au

funded by
GRDC
AISRF
Yitpi Foundation

Ross Ballard
Jorge Casal
Karine Chenu
Liz Farquharson
Kristy Hobson
Anthony Leonforte
Yongle Li
Larn McMurray
Richard Richards
Garry Rosewarne
Tim Sutton
Jenny Wood