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Take home message 

• The regional inter-model comparison of 12 seasonal forecast systems showed that no single 
forecast system stood out as superior in predicting rainfall for all regions and seasons. However, 
our analysis did identify groups of models having skill, particularly in winter and spring 

• The Bureau’s model (ACCESS-S1) was consistently one of the top performers across most of 
eastern and northern Australia based on our regional analysis 

• A more in-depth evaluation of wheat yield forecasts generated from the top performing 
forecast systems indicated sufficient skill from mid-way through the season (July). This implies 
that at best, seasonal climate forecasts can provide guidance on yield estimates during the 
middle to latter stages of the winter growing season.  

Introduction 

The AgScore project represents a new approach to a pertinent question in agri-climatology: How 
good is my seasonal climate forecast? Seasonal climate forecasts (SCFs) can provide important 
information and can reduce agricultural decision-making risk, provided they are timely, relevant and 
accurate (Meinke et al., 2006). Seen as a critical innovation for farming in the last three decades, the 
uptake of SCFs is increasing but still faces major challenges particularly around their quality and 
usefulness (Hayman et al., 2007; Taylor, 2021). 

The agricultural sector is one of the largest users of SCFs, particularly for farming systems that are 
dependent on seasonal patterns of rainfall e.g., grains and livestock industries (Centre for 
International Economics, 2014; Robertson et al., 2016). A skilful SCF can mean many different things 
depending on the user and how the forecast information affects their decision-making process. 
Agriculturally relevant forecasts can include climate-based predictions for specific time windows or 
relevant thresholds (e.g., probability of receive in excess of 20 mm in the next month) and more 
sophisticated predictions of yield or farm productivity (Cowan et al., 2020; Hansen et al., 2004).  

A central premise of the AgScore project is that the evaluation of seasonal climate models, and the 
forecasts derived from them, often lack information on how their performance might influence 
agricultural decision-making. Broad regional indicators of model skill (e.g., ability to simulate ENSO 
over the Top End) may help to inform climate researchers about the model’s ability to simulate high-
level climate drivers (Duan and Wei, 2013) but may provide little information on forecast value for 
agricultural users (Jagannathan et al., 2020). Agricultural users of forecasts often require the 
translation of climate-based forecasts into particular climate-driven indicators to inform the 



seasonal trajectory of productivity and their overall profitability (Lacoste and Kragt, 2018; Meinke et 
al., 2006). This has motivated the AgScore project to look at SCF performance and value from several 
perspectives and develop a common benchmarking approach to comparing different SCFs. 

This paper reports on two components of the AgScore project, namely: 
1. A side-by-side evaluation of different forecast systems from a suite of international 

forecasting agencies for the major agricultural regions across Australia. 
2. Further examination of a subset of these forecast systems in terms of their ability to predict 

wheat yield. 

How good are the forecasts for my growing region? 

At the core of our approach was gauging the performance of various seasonal forecasting systems 
on an even playing field. We performed a regional inter-model comparison involving 12 different 
forecast systems including 10 dynamical global climate models and 2 statistical models (Table 1 and 
Table 2). The analysis presented here, is based on hindcast datasets, or forecasts generated in the 
past. This allows us to verify the performance of different model predictions with observations. The 
verification process measures the accuracy, reliability and skill of the different forecast systems over 
the entire hindcast period which was between 20 to 24 years (Table 1 and Table 2).  

Data from the different hindcast datasets and observations were remapped to a common grid so 
that we could compare each forecast system at a similar spatial resolution (approximately 100km x 
100km). Total rainfall and average temperature forecasts for three- and six-month forecasting 
windows were generated for the first month of each season (i.e., March, June, September and 
December). Data for key verification metrics are presented for individual grid points and averages 
across different Australian Agro-Ecological regions (AAEs, Williams et al., 2002). 

 



Table 1. Details of the hindcast datasets from ten Global Circulation Models included in the regional 
inter-model comparison. 

Label Forecasting Agency Model Ensemble 
size# 

Data period 
available 

Data period 
included in the 

assessment 
Variables* 

ACCESS-S Bureau of 
Meteorology ACCESS-S1 11 1990-2012 1993-2012 Rainfall, 

Tmin, Tmax 

CANCM4I Canadian Met 
Centre 

CanSIPSv2 / 
CanCM4i 10 1980-2010 + 

2011-2018 1993-2016 Rainfall, 
Tmean 

CMCC 
Euro-Mediterranean 
Center on Climate 
Change 

CMCC-SPS3 40 1993-2016 1993-2016 Rainfall, 
Tmin, Tmax 

DWD 

Deutscher 
Wetterdienst 
(German 
Meteorological 
Service) 

GCFS 2.0, 
system 2 30 1993-2017 1993-2016 Rainfall, 

Tmin, Tmax 

ECMWF 
European Centre for 
Medium Range 
Forecasting 

SEAS5, system 
5 25 1993-2016 1993-2016 Rainfall, 

Tmin, Tmax 

GEMNEMO Canadian Met 
Centre 

CanSIPSv2 / 
GEM-NEMO 10 1980-2010 + 

2011-2018 1993-2017 Rainfall, 
Tmean 

METEO-
FRANCE Météo France Météo-France 

System 7 25 1993-2016 1993-2016 Rainfall, 
Tmin, Tmax 

NASA 

NASA Global 
Modelling and 
Assimilation Office 
(GMAO) 

GEOS S2S 4 1981-2016 1993-2016 
Rainfall, 
Tmin, Tmean, 
Tmax 

NCEP 
National Centers for 
Environmental 
Prediction 

CFSv2 24 1982-2011 + 
2011-2019 1993-2017 Rainfall, 

Tmean 

UKMO UK Met Office GloSea5-GC2-
LI, system 14 28 1993-2016 1993-2016 Rainfall, 

Tmin, Tmax 

*Tmin, Tmax and Tmean denote minimum air temperature, maximum air temperature and mean air temperature 
respectively. 

#Ensemble size refers to the number of separate model runs available 



 

Table 2. Details of the statistical forecast systems included in the regional inter-model comparison. 

Model Forecasting 
centre Ensemble size# Historical dataset 

Data period 
included in the 

assessment 
Variables* 

SPOTA-1 

Queensland 
Department of 
Environment and 
Science 

25 1890-1992 1993-2016 Rainfall, Tmin, 
Tmean, Tmax 

SOI-Phase 

Queensland 
Department of 
Environment and 
Science / USQ 

Variable 1890-1992 1993-2016 Rainfall, Tmin, 
Tmean, Tmax 

*Tmin, Tmax and Tmean denote minimum air temperature, maximum air temperature and mean air temperature 
respectively. 

#Ensemble size refers to the number of separate model runs available 

We developed an interactive dashboard that presents the results of our verification analysis by 
allowing users to explore their regions and seasons of interest. It covers all Australian Agro Ecological 
regions (AAEs) excluding the arid zone, making it useful for many different agricultural sectors and 
provides the most comprehensive side-by-side comparison of seasonal forecasts for Australia to 
date. Skill is defined as a forecast that has accuracy and reliability that is better than climatology. At 
best a skilful forecast needs to provide more information than a forecast with an equal likelihood of 
a particular outcome (e.g., above median rainfall).     

Across the entire set of AAEs there were similar levels of performance across the majority of the 
forecast systems in terms of: accuracy (weighted percent correct and Continuous Rank Probability 
Skill Score; CRPSS), reliability and correlation.  

However, there were larger differences among SCFS for different AAEs. Some key results include:  

• No clear standout forecast systems in terms of superior skill across each region and season. 
There was at least one model (NASA) that had consistently poor skill (worse than 
climatology) 

• The skill (based on the CPRSS) for rainfall and temperature among SCFS tended to be lowest 
in autumn and higher in spring and summer months 

• The Bureau of Meteorology’s ACCESS-S1 model performed soundly, and skill values were 
consistently as good as or better than other forecast systems considered in this study (Figure 
1). This was particularly true for autumn and spring forecasts for much of eastern Australia 

• The Western Wheatbelt AAE (overlaps Western GRDC region) had limited skill for most of 
the year, with some skill in winter (Figure 2) 

• The skill of forecasts for AAEs overlapping the Southern GRDC region were mixed, with those 
areas further west (South Australia) having lower skill than areas further east (Figure 3) 

• The Northern GRDC region had higher skill in winter and spring than other wheatbelt AAEs 
(Figure 4) 

• The SCFs based on statistical models (SPOTA-1 and SOI-Phase) did not have superior skill or 
accuracy to the forecasts based on dynamical models. This included AAEs where the 
statistical models were originally developed i.e. Queensland/Northern NSW.  



 
Figure 1. The ranking of the Bureau’s model (ACCESS-S1) relative to the other 11 SCFs for a  

three-month rainfall forecast window i.e. one meaning ACCESS-S1 is the top-ranking model among 
the twelve models tested. The ranking was based on the Continuous Rank Probability Skill Score 

(CRPSS) at that grid point. The size of the symbol is scaled by the CRPSS and values less than zero are 
denoted by the star symbol (indicating no skill). 



 

 

 

Figure 2. Top: Map of Australian Agro Ecological zones, with the Western Wheatbelt of WA in 
highlight.  Bottom: Continuous Rank Probability Skill Scores (CRPSS) among the 12 SCFs for winter in 

the western wheatbelt AAE over a three-month forecast period. The background shading of each 
panel indicates level of skill: red (lower half of graph, CRPSS < 0) – poor or worse than 

climatology, yellow (middle, CRPSS between 0 and 0.5) – moderate or slightly better than 
climatology and green (top, CRPSS > 0.5) – good or substantially better than climatology. 



 

 

Figure 3. Top: Map of Australian Agro Ecological zones, with the Eastern Wheatbelt area in NSW and 
VIC in highlight.  Bottom: Continuous Rank Probability Skill Scores (CRPSS) among the 12 SCFs for 

spring in the Eastern Wheatbelt AAE over a three-month forecast period. The background shading of 
each panel indicates level of skill: red (lower half of graph, CPRSS < 0) – poor or worse than 
climatology, yellow (middle, CPRSS between 0 and 0.5) – moderate or slightly better than 
climatology and green (top, CPRSS > 0.5) – good or substantially better than climatology. 

 



 

 

Figure 4. Top: Map of Australian Agro Ecological zones, with the Northern Wheatbelt area in NSW 
and QLD in highlight.  Bottom: CRPSS scores among the 12 SCFs for spring in the Northern Wheatbelt 

AAE over a 3-month forecast period. The background shading of each panel indicates level of skill: 
red (lower half of graph, CPRSS < 0) – poor or worse than climatology, yellow (middle, CPRSS 

between 0 and 0.5) – moderate or slightly better than climatology and green (top, CPRSS > 0.5) –
 good or substantially better than climatology. 

Limitations of the inter-model comparison  

The results produced by this study need to be treated with caution. Like all climate inter-
model comparisons, the verification process has several caveats that need to be considered when 
making conclusions from the data. Inconsistencies in hindcast data among forecast systems include 



differing spatial resolution, hindcast verification periods and ensemble size all contribute to further 
uncertainties in the analysis. Furthermore, verification of hindcast data does not capture 
performance of operational forecasts and it is these forecasts that can influence public perception of 
forecast quality and overall confidence in seasonal climate modelling overall.  

Do yield forecasts offer improved performance? 

The second part of the project looked at forecasting seasonal patterns in productivity in terms of 
wheat yield. We used a new software service, AgScore™, developed by CSIRO (Mitchell, 2021). The 
AgScore service was used to test five different forecast datasets including the Bureau’s ACCESS-S1 
and the newly released ACCESS-S2 models as well as the ECMWF-SEAS5 model (European 
forecasting agency). Three different calibration and downscaling methods were also tested, to 
compare different approaches applied to the same raw forecast data (ACCESS-S1). These 
downscaling methods include: a relatively simple quantile-quantile matching approach (QQ) and two 
more complex approaches - Empirical Copula Post-Processing (ECPP) and Bayesian Joint Probability 
(BJP). 

The AgScore service ingests forecast datasets for a select group of locations and automatically 
creates and executes workflows that run simulations of wheat and performs verification analyses. 
The results for a particular forecast dataset are provided to the user as a report card, providing a 
summary of the performance of the data from an agricultural perspective. The wheat simulations 
were performed using APSIM and configured in a way to allow for a comparison of a model-based 
forecast and a climatology forecast. The wheat simulation for a particular location had a fixed sowing 
date (late April) and used a combination of weather observations and forecasts initiated at different 
start months (i.e., May, July and September) to grow the crop. This means that a simulation using a 
forecast data starting in May had a larger contribution of its weather input from the model-based 
data compared to a forecast starting in September. As in the first component of the study, forecast 
skill is measured as the level of improvement of the model-based forecast over climatology.  

The AgScore service provides a report in the form of an interactive dashboard (Figure 5). The results 
use several different measures of forecast quality as well as diagnostics to identify underlying issues 
with the forecasts provided to the service. The target user of the service is researchers interested in 
climate modelling, development of calibration approaches and agricultural forecasters.   

  

 
Figure 5. Example of an AgScore™ Wheat report card. Results are presented as an interactive 

dashboard. 

 

 



A. 

 
B. 

 
Figure 6A. Map of Continuous Rank Probability Skill Score (CRPSS) for yield among regions for 

different forecast months and 6B. percentage of regions with a CRPSS greater than 0 (positive skill) 
for yield across all forecast months. The five different forecasts are denoted by the climate model 

name and downscaling method (see text for details)., 



The key results from this second component were: 

• For most locations, yield forecasts based on the Bureau models (ACCESS-S1 and ACCESS-S2) 
and ECMWF-SEAS5 had skill from mid-way through the growing season (July; Figure 6). 

• The new Bureau model (ACCESS-S2) showed small improvements in skill from the previous 
version (ACCESS-S1; Figure 6 A). This may in part be explained by the former having a longer 
hindcast dataset (1981-2018) over which to test the performance. 

• The downscaling method applied to the climate model data had some influence on the skill 
of the yield forecasts, with one method (ECPP) having poorer skill compared to the other 
methods (Figure 6). Whereas no clear differences were found for the other two methods: 
Quantile Quantile matching (QQ) and Bayesian Joint Probability (BJP). This suggests that 
some improvements in skill can be realised using the appropriate downscaling method. 

Conclusions 

While there is a tendency to try and ‘pick winners’ when comparing forecasting performance among 
different global forecasting systems, this study exposes some of the complexities of taking such a 
position. We did not identify a single model with superior skill in all locations and seasons. For grains 
regions there are several models that provide skill for southern and eastern regions during winter 
and spring. While the Western region has limited skill across the winter growing season, noting we 
did not include DPIRD’s Statistical Seasonal Forecast system 
(https://www.agric.wa.gov.au/newsletters/sco), the Bureau’s model, the most widely used seasonal 
outlook in Australia, ranked highly among the top-performing models.  

These results provide a comprehensive and standardised comparison of seasonal forecast systems 
whilst emphasising the need for improvement in the overall forecast performance. Furthermore, we 
recommend continued use of the Bureau’s forecast products, but advocate for a consensus-based 
approach to presenting forecast information. This means presenting results of forecasts from high-
performing models’ side-by-side to instil confidence for growers when reading seasonal forecast 
information.   

Forecasts translated into yield-based predictions have obvious benefit to users in that they 
incorporate multiple climate drivers i.e., rainfall and temperature and integrate seasonal trajectories 
of plant growth. Our results show that the best forecast systems and corresponding downscaling 
methods, can provide skill during mid to late stages of the winter wheat growing season (July 
onwards). This is likely to offer benefit to in-season management decisions around fertilising, 
marketing and logistics. Both models tested, the Bureau’s new ACCESS-S2 and Europe’s ECMWF-
SEAS5 had similar performance and could be applied to existing wheat forecast systems such as 
CSIRO’s National Graincast™ service (Hochman and Horan, 2019). 
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