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Take-home messages 
• There is useful information in historic remote-sensing data, but the data requires considerable 

processing and analyses 
• Data on factors influencing the variation of yields, in particular soil constraints and seasonal 

rainfall, can help interpret any consistent spatial patterns of within-field yield variation 
• We are developing a web-based tool to process the data and make the information easily 

accessible and interpretable 
• The tool should provide growers with better knowledge of past performance and of consistent 

spatial patterns of yield variation that could be attributable to soil constraints. 

Introduction 
Better knowledge and understanding of the variation of past crop yields (both spatially across a 
paddock, and temporally from season to season) can help growers make better management 
decisions to improve yields in future. Information about the most important drivers of this variation 
can provide further help. The remote-sensing data compiled from earth-observing satellites provides 
a valuable information source. In particular, the Landsat series of satellite images (Landsat 5, 7 and 
8) provide a consistent set of data dating back to the 1980s.  These provide a good opportunity to 
look at consistent patterns through time – that is, spatial patterns of yield variation that repeat 
season after season. Such consistent patterns might imply the presence of some kind of soil 
constraint limiting yields in parts of the field.  

For the remote-sensing data to be useful to growers, there is a substantial amount of processing 
involved:  

(i) Accounting for atmospheric effects and the removal of clouds from each image 
(ii)  The selection of the most relevant images (from a time series of images) and the 

calculation of an appropriate index to represent the property of interest in any given 
growing season (yield) 

(iii) Statistical analyses of the resulting dataset.  

The aim of the work in this project is to develop a web-based tool that growers can use to look at 
past crop yields in their paddocks and detect any consistent spatial patterns. Along with the 
processing and analysis of the remote-sensing data, the tool will compile and present past rainfall 
data and maps of soil constraints. The data on these driving factors could help the user to interpret 
the variation shown by the remote-sensing data. The tool will aim to make the analysis easy to use 
and interpret.  



Here, we present work towards the development of this tool, and illustrate the type of information it 
will provide. The illustration is described as a number of steps, some of which the user of the tool 
will follow, and others which describe the processing and output of the tool. 

Illustration 
1. The user inputs the field boundary 
The user inputs the field boundary on a map in a web browser. For example, Figure 1 shows the field 
boundary for a field (called Grandview) at a farm near Biloela, Queensland, which will be used as an 
illustration.  

 

Figure 1. The Grandview field boundary, which will be used as an illustration site; the user will enter 
this boundary by navigating and clicking the boundary points on a map 

 

2. Remote-sensing data are collated and analysed to give a yield index for each growing 
season 

When the user has entered the field boundary, the remote-sensing data from within the field 
boundary are compiled and analysed; maps are presented of a yield index for each growing season 
dating back to 1999 (Figure 2). To produce each of these maps, time series of images are compiled 
for each season (not shown here), and images from close to the time of maximum biomass used to 
calculate a vegetation index, which correlates with yield. For each growing season, the time series is 
also analysed to determine whether there is enough information to conclude that a winter crop was 
grown; if so, then a tick is displayed next to the map, else a cross is displayed. The user will have the 
chance to unselect certain years, for instance years where it is evident that the field was split into 
different management zones (so that when summarising the long-term results, spatial variation due 
to management differences within the field does not get confused with spatial variation due to soil 
constraints). Only maps for the ticked years will be considered in further analysis. It should be noted 
that the maps show spatial variation within the field in any given season but cannot be used to 
compare yields across different seasons.  



Also shown next to the map for each winter growing season is the growing-season available water, 
defined here as a third of the preceding summer rainfall plus the current winter rainfall (French and 
Schultz, 1984). A recent study (Chen et al., 2019) used this as a variable to summarise climate in a 
simple model for predicting wheat yield, with peak yields predicted to occur at around 450 mm, and 
25% reductions from the peak yield predicted at around 300mm; in the plots, the growing-season 
available water is shown on a scale of 0-600 mm and is filled light blue or orange, depending on 
whether the growing-season available water fell above or below 300mm. Although this information 
is presented here, it is not currently used by the tool, but is something that will be developed further 
during the course of the project. 

 

 

Figure 2. The yield index based on analysis of the remote-sensing data for the 20 growing seasons 
from 1999 to 2018. Ticked years indicate when there was sufficient evidence in the remote sensing 

data to conclude a winter crop was grown, crossed years indicate when the data did not support this 
conclusion. Available water, defined as a third of the preceding summer rainfall plus the season’s 

winter rainfall, is also shown, on a scale of 0-600mm, and coloured orange when less than 300mm. 

 



3. The produced yield index data for all growing seasons are analysed and any 
consistent spatial patterns shown 

The data from the ticked years are summarised by a map of the mean for each pixel, and a statistical 
analysis is applied to each pixel to determine whether there is evidence that it has been consistently 
high or low yielding. This splits the field into three categories; consistently high, consistently low, 
and moderate (Figure 3). 

 

Figure 3. Maps summarising the long-term average of the yield index (over all cropped years) and its 
classification into consistently high and low yielding areas. 

4. Soil maps based on legacy datasets are displayed for comparison 
Also shown by the tool are maps of soil constraints (Figure 4; Orton et al., 2020; Lai et al., 2020), 
produced based on ‘legacy’ soil data (data collated from state and CSIRO soil databases; Searle, 
2014), as well as data on ‘environmental covariates’ (climate, terrain, radiometric surveys, soil order 
maps). For illustration, Figure 4 shows predictions of exchangeable sodium percentage (ESP, for soil 
sodicity) and electrical conductivity (EC, for soil salinity) across the field, although information for 
other soil constraints will also be available in the tool. The soil maps are shown next to the long-term 
yield summary maps, to allow comparison. The maps of the soil constraints provide the user with 
some background information, but because they are produced based on legacy data (perhaps the 
nearest soil profile measurement being from another farm), it is unlikely that they will provide the 
grower with new knowledge of the field.  

 

 

Legacy Soil Maps



Figure 4. Soil maps for exchangeable sodium percentage (ESP, for soil sodicity) and electrical 
conductivity (EC, for soil salinity) produced based on the legacy soil data. Maps summarising the 

yield index are also shown for comparison. 

5. The user has the opportunity to input their own local soil data, and the legacy maps 
are then updated 

To provide more useful local information on the spatial variation of soil constraints within the field, 
the user will have the option of entering their own local soil data, which will be used to update the 
soil maps that were produced based on the ‘legacy’ soil datasets. This feature will allow the user to 
get the most out of all information sources (legacy and local data and the relationships between the 
soil constraint and the environmental covariates). For the illustration site, the updated maps are 
shown in Figure 5, again shown next to the long-term yield summary maps. In this example, the 
maps of both subsoil ESP and subsoil EC show similar spatial patterns to the map of the long-term 
average of the yield index, suggesting that these soil constraints might be causing the within-field 
yield variation.  

 

 

Figure 5. Soil maps for exchangeable sodium percentage (ESP, for soil sodicity) and electrical 
conductivity (EC, for soil salinity) produced based on the legacy soil data and updated given the local 
soil data. Maps summarising the yield index and showing the local soil data locations are also shown 

for comparison. 

6. If local data are inputted, the tool also displays and compares soil profiles in high and 
low yielding areas. 

If the user has inputted their own soil data, then the tool will allow comparison of soil profile plots 
for profiles that fall in the different yield classes. Figure 6 shows the illustration, with local data on 
ESP, EC and soil chloride (Cl). The most notable differences between the low-yielding and high-
yielding areas of the field are below 50cm in the soil profile, with the low-yielding profiles being 
characterized by higher values of subsoil ESP, EC and Cl.  

Locally updated Soil Maps



 

Figure 6. Average soil profile data from within consistently high yielding (green solid lines) and  
consistently low yielding (dark red dashed lines) areas. Measured soil constraints shown are 

exchangeable sodium percentage (ESP), electrical conductivity (EC) and soil chloride concentration 
(Cl). 

How can the tool help growers? 
Identification of consistently poor yielding areas of a field can help growers to target further soil 
sampling to better understand the factors causing this yield variation. If local soil data can explain 
the spatial patterns of yield variation, then appropriate amelioration strategies can be considered, 
which is the focus of work in another linked GRDC project. In many cases, the tool might only serve 
to confirm what the grower already knows, while in other cases the tool might provide valuable new 
insight.  

Further work 
Over the remainder of the project, we will look at: 

• Refining and validating the yield index so that it better represents yield in any given season 
• Whether there is evidence that the spatial variation of yield is different in wet and dry years, 

with less impact of soil constraints being expected in years when there is sufficient in-season 
rainfall; this feature could be added to the tool in future 

• Correlating the remote-sensing data with the soil data and rainfall data statistically, to see if 
this can provide improved predictions of soil constraints leading to yield loss 



• Improving the legacy soil maps by including more recently collected soil data and satellite-
based covariates 

• Building the computer code into a web-based application. 
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